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Introduction 

Forced Transverse Vibration of a Solid 
I Viscoelastic Cylinder Bonded 

to a Thin Casling' 
The amplitude versus frequency-response spectra of stress and displacement components 
zuithin a solid viscoelastic cylinder bonded to a thin elastic casing are obtained when arbi- 
trary normal and tangential stresses are applied to the outer surface of the casing. 
Special consideration i s  given to assemblies whose cores are made either of a Voigt ma- 
terial or a Maxwell material. A quantitative comparison of the bond stress amplitude 
spectrum at the lowest circumferential wave number reveals for both Voigt and tdWaxwel1 
cores, and for small valses of retardation time and relaxation time, respectively, that the 
amplitude ratio between the mdial bond stress and the lateral pressure decreases with 
increasing values of thb time constant. A s  the time constants get larger, the resonant 
amplitude incveases for the Maxwell material, and decreases for the Voigt material. 
The Voigt core essentially behaves like a n  elastic solid at small values of its retardation 
time, and Zike a viscous fluid at large values of i ts retardation time. The Maxwell core 
essentially behaves like a nonviscous fiuid at small values of its relaxation time and like 
an  elastic solid at large values of i ts relaxation time. 

LET US investigate the response to a forced vibration 
of a long solid viscoelastic cylinder bonded to a thin casing. The 
vibration inducing excitation consists of a time-varying surface 
pressure and shear stress applied to the outside of the casing in 
such a way that their spatial variations are only in the circ~un- 
ferential direction. The assembly is assumed to be long enough 
to be analyaed from the point of view of plane strain, so that the 
displacements in the longitudinal direction may be neglected. 

The problem under consideration has a considerable number of 
technologically important applications in the field of solid pro- 
pellant rocket motors. During high velocity motion of a rocket 
through a compressible fluid medium, surface pressures may be 
met which are of the pulse type, or which may be represented by 
stochastic functions, or which are of the periodic type. The 
pulse-type pressure arises from  mif form waves propagated 
through the medium, stochastic pressures are developed from 
- 
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acoustic noise, and periodic pressures arise from sources of steady 
vibration in the medium. The vibrations developed during each 
of the foregoing loadings induce stresses whose magnitudes affect 
the s t r~~ctural  integrity of the assembly and represent one of the 
factors which has to be taken into consideration in an evaluation 
of the reliability of the assembly during operation. 

In  the present paper, equations will be derived from which one 
can evaluate for specific time-dependent loading programs, both 
the normal and shear stress a t  the interface between a viscoelastic 
cylinder and its casing, as well as equations for the radial and 
tangential stress and displacement components throughout the 
rest of the assembly. The newly derived relations will be wed to 
obtain some numerical results for a particular set of geometric 
and material parameters so that a quantitative comparison can 
be made between a Voigt type and a Maxwell type of viscoelastic 
core with several different values of retardation time or re- 
laxation time, respectively. 

The forced-vibration analysis to be presented is an extension of 
a previous paper by the authors which dealt with the free 
transverse vibrations of elastic assemblies geometrically identical 
to the one herein considered. The extension to forced vibratictns 
of materials with viscoelastic stress-strain properties is ac- 
complished by the use of "a modification" to a dynamic corre- 
spondence principle suggested by Bland [2]. 

Some theoretical work on the forced transverse vibration of a 
solid, elastic cylinder has been previously presented by Bal- 
tr~tkonis [3]. He found the steady-state displacement field in a 
cylinder due to  a rigid-body translation of the surface which 
varies sinusoidally with time. Baltrukonis' theoretical solution 
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was subsequently studied by Magrab [4] who plotted the dis- 
torted position of circles and rays initially inscribed on the 
cyliilder. 

Forced vibration of a hollow viscoelastic cylinder assembly 
has nlso beerr analyzed by Henry and Freudenthal [5]. They 
treated oilly axisymmetric motion in meridional planes and used 
inemhrane equat,ioris for the shell in coilsidering the interaction 
between the i~iner cylinder and the outer shell. 

Rogers and Lee [6] studied the efl'ect of time-dependent loads 
on a compressible viscoelastic cylinder bonded to an elastic shell, 
by neglecting vibratory inertia forces. Achenbach [7], on the 
other halid considered the dynamic response of a case-bonded 
viscoelnstic cylinder with an i~lcorl~pressible core. 

Dinerenlial Equations and Boundary Conditions 
. . . A typical cross section taken through the assembly is shown in . . . 

Fig. 1. The viscoelastic solid propellalit is designated "core" 
:~11d lies ill the regio~r O 5 r 5 a. At r = a, the core is bonded to 
:L t1li11 casing of wall thickness h. Il~iring forced vibration, sur- 
face loads p ( 0 ,  1) and q(0, t )  are applied to the outer surface of the 
casing ill the normal and tangential directions, respectively. The 
radial and circurnferent,ial coordinates are desig~iat,ed r, 0 while 
(,he paramet,er time is designated t. Under load, particles are 
displaced ill the radial direction u(r, 0, I )  and in the tangential 
direction v(r, 0, 1). There is no displaceme~lt in the axial direc- Fig. 1 A solid cylinder bonded to a thin casing 

Lion. The associat,ed radial, circumferential, and shear stresses 
uTv, ges, a ~ ~ d  u,8, respectively, are shown on a typical element de- The foregoing describe the elastic field equatioris and appro- 
scribed ill polar coordinates. With rio additional applied body priate boundary conditions to be used in the investigat,ion of the 
lorce on t he propellant,, the differential equations for the resultant forced-vibraLion problem. 
displacemelit vector w of the core are the same as they are for the 
free-vibration problem. Hence the current preseritation can be 
hhortened by referencing the fact that the authors have shown [I]  
the differential equation for the displacement vector w to be 

for all assembly wit,h a compressible elastic core,%here K is the 
bulk modulus, G is the shear modulus, arid y is the mass cler~sit,y 
per unit vol~lmc of the core material; u is the meall normal stress. 

Thin shell theory is used to describe the deformatioii of the 
casiilg. The deflectioll of the casing middle surface, is approsi- 
rnately eclual to t,he deflection of the core at  r = a, because of 
continrdty co~isideratio~ls. Hence the differential equations of 
t>he casing may serve as the bouiidary conditions for the displace- 
rxlellt equatiorrs of the core. The required boru~dary conditiorls 
were derived by the authors [ I ]  for an elastic case arid core, with 
the case free of external surface tractiolis. When they are 
modified lo include an esterllally applied radial pressure p(0, t) 
:ind a circumferential shear st,ress q(0, t) at, the outer surface of 
t he casing, the boundary conditioris a t  r = a become 

Bivariate Fourier Transform 
To solve the system of partial digerential equations presented 

ill the previous section, use will be made of t,he bivariate Fourier 
transform, to be defined. The resulting equations will be solved 
and the inverse transform will then be applied. This method of 
solutioli irrlposes one appare~~tly undesirable restriction; ]lamely, 
the i11:tbility t,o impose initial cor~ditions 011  t,he displacenielit vec- 
tor G(r, 0, 0)  : I I I ~  on the ve1ocit.y vector d i ( r ,  0, 0)/?11. As a 
c:ollsecluellce of (,his rest,riolioi~ only a particular solutiol~ is ob- 
tained whioh ~ievert.heless is irnporta~lt beoause ol i t , ~  use in corn- 
puting the steady-state response to periodic iripuis. 

The bivariate Fourier transform will be defined arid some of its 
properties observed by discussing an arbitrary scalar functioli 
f 0, 1) .  Later the t,rarlsform will be applied to the displacement, 
vector and to the stress compoilei~ts. The bivariate Fourier 
t,ransform (or spectrum) F, is obtained by the double integration 
off with respect to 0 arid t .  The f~mction f can be recovered froni 
F ,  by taking t,he inverse Fourier transform of F,,. Specifically, 
the f~mctions F,  and f are related by equations (3a) and (3b) 

The symbol E, v are, respectively, Young's modulus arid 
Poisson's ratio for the casing material. D = Eh3/12(I - v2) is 
the flexural rigidity of the casing, and p is the mass density of the 
c:~si~~g, per unit area of the middle surface. 

The current paper is concerned with an assembly having a com- 
pressible elastic core. The corresponding solution for an assembly 
with an i~lcorn~~ressible elastic core is also presented in reference 181. 

Many useful relations can be derived from equatioi~ (3), including 
the following 

where the symbol S( ) deiiot,es the Fourier transform of the 
quantity in parentheses. 

I t  is converiierit ill the present analysis lo irltroduce the Fourier 
t,ransform of the-vector displacement function i ( r ,  8, t), which is 
equal to u+ + v0, where the radial and circumferential displace- 
ments ,u and v are scalars; : 8 are the base vectors in the radial 
atld circumferential directions, respectively. The operation of 
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forming {,he t,ransform of w, which is a vector, can be accomplished 
by first. :a.pplying the 5 operai.or to the scalar displacement, com- 
porrent,s 11, and 11. Should we defi~le l J ,  :is F ( I L )  a~rd  r,, as S ( v ) ,  
t,he vect.oi field W,, eq11:tl t,o (J,,? + V,,% ma.y {,hen he i~lterpret~ed 
:%s {.he Fourier t,~.a~isforn~ of G. The vec:tor space associat.ed with 
such an il,t,erpret.a.t,ioii is Hermitian over {,he field of complex 
numbers. 

The foregoing irlterpretatioii of t,he Fourier trarlsform of the dis- 
placement vector can be applied to equation ( 1 )  in order to obtain 
the transformed displacement equation for an assembly with a 
compressible core, 

( K  + % G )  grad div (w8?lia) 

- G cinl curl (w,ejnB) + y w ~ , e j n s  = 0 ( 5 )  

The Fortrier transform may also be applied to the associated 
boundary conditions. In addition to the displacement compo- 
nents u and v, the bomldary conditions contain the externally ap- 
plied radial pressure p, the exter~ially applied shear stress q, and 
the mean normal stress cr. These are all scalars too, so that the 
Fourier transform may be applied directly. 5 ( p )  is to be called P,, 
5 ( q )  is to be called Q,, and 5 ( u )  is to be called 2,; U ,  and V ,  
were previously defined. When the Fourier transform of equa- 
1,ions ( 2 )  are taken, it is found that the transform of t,he bonndary 
conditions a t  the interface r  = a  may be writt,en 

E h. n2D 

a2(1  - v 2 )  
jn ( U ,  + jnV,) - - (7, - jnu,)  + pw2V, 

a4 

The general solution to equation ( 5 )  and with W, expressed 
as U,? + V,% with n = 0, 1, 2  . . ., was previously found by the 
authors [ I ]  t,o be 

for n  = 0, 1, 2, . . . (Tb) 

where J,(x)  is Ressel's funct,ion of the first kind of order n, and 

The coefficients b, and c, are arbitrary  constant,^. 

Values of the foregoing Fonrier t,ransforms for negative in- 
tegers n can be obt,ained by applying the property that t,he spec- 
trum at negative n, and positjive w  milst be the complex conjugat,e 
of the spectrum at, positjive n  and ]legatfive w. I n  general the 
spectra m11st; he evali~ated for all real freqllencies w, from - 
to + m  . 

Each of t,he general soll~tions cont,ai11 arbil,rary co~lstants b, and 
c,. They may be expressed in terms of tjhe input spectra P,(jw), 
Q,(jw) by solving the two linear, nonhomogeneous equat,iona ob- 
tained when the general solltlion is snbst,itj~~tmed into the bonndary 
co~ldit~ions. 

The aforemerrt,ioned linear, ~ronhomogeneous equations may 
be obtained by substitutir~g the general solut io~~ of equation ( 7 )  
into the bollndary conditions of equation (6). They may be 
writt,e~l 

r ,  1 he term n/l in the p~,evioi~s expression is t,he 2  X 2 1n:itl.i~ defirlcd 

n~ = ./I [ 0 1  + [ / J . - I ( / )  o 
.Jn(z) 0 &In- , ( z )  

(10) 

I t  contains the second-order matrix A whose  element,^ a,, are de- 
fined 

a,? = n  ( ( .  + 1 )  + 12(i)3 - ),us 

a21 = n hw2 - n.(n + 1 )  I ( ; ) ' I )  
Ga" 

- [ C 2  - 2n(n  + I ) ]  - ( 1 1 ~ )  D 

at: = jn { n ( n  + 1 )  [n  + 12 ( ; ) ' I  
Ga :' 

- hw2 - 2 ( n  + 1 ) -  (1 Id )  D 

The preceding contain newly defined parameters 

z = a a ,  / = pa, h  = pa4/D 

The matrix M a,lso contjains the second-order matrix 13 whosc elr- 
ments b,, are defined 

bll = jn ---- - r2r3 n - 12 ) (I.., 

b12 = -n4 - 12 (4) '  + Pg +Aw? ( I  211) 

,, = n 2 [ 1  + 12 (;)?I  - E - hw' (1 2c) D 

bv. = jn {?",f - [,' + 12 ($ 
The spectra U,, V ,  of the displacement compolre~its are 

evaluat,ed by solving eqnation (9) for h,, c, and sl~t~xiit I I ~  ir~g the 
res~~l t~s  into equation (7) .  I>et,erminaijion of the co1.e st.ress rom- 
ponents will be discussed in the next sect,ion. 

Fourier Spectra of Core Stress Cornponerats 
The stress and strain components within an elastic material 

obey Hooke's law. By making use of t,he strain-displacerne~~t. 
relations, each of the stress components can be expressed ill terms 
of the displacement components. For a problem of plane straill 
the st,ress-displacement relations in cylindrical coordin:ltes rnay 
he writ,l,en 

( 
av v  1  au u , o = G  (1:Sa) 
br T r b t l  

cr.. = ( K  + ; G )  + ( K  - ; G )  ( 
coo = ( K  - 5 0 )  $ + ( IC  + S G )  (:+ l:g 

( ;)(; u  
a,,= K - - G  + ; + - - -  

usz = uz, = 0 (1%) 
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where the shear n~c~dr~ltw G :%rid t.he bttlk rnodl~l~w K are related 
lo the morl~ili ol' elnsticaily B 2nd Poisso~~'s rat,io v by t,he rela,- 
I iolis 

1Sach of the stress components are scalar functions so that it  is 
permissible to form the bivariate Fourier transform in each case. 
The resultiiig spect,ra of the stress cornpor~e~~t ,~  Zn(i f)  is equal to 
F i g z j )  with i, j equal to r, 0, or z. When the Fourier transform of 
eqlli~tiori (I:<) is talren, it  is fourid, ill view of equation (4c) that 
the spectra of the stress compo~~erits car1 be expressed in terms of 
['he spectra of the displacement componerits by the relations 

Solutior~s for U,, V,, and 2, were presented in Ihe previous 
sectiorl. I-Ienlce the spectra of stress components can be deter- 
mined directly from equations (1.5). 

Exlension of Solution to Linear Viscoelastic Materials 
The foregoing solution to the forced-vibration problem of an 

elastic assembly is easily extended to linear viscoelastic materials, 
by making use of "a modified form" of a dynamic correspondence 
pri~iciple originally derived by Blarid [2]. A modificatiori to the 
origiiial worli is required because of the use of the bilateral 
Fourier transform in the present analysis, which is not identical 
t,o that used by Blarid. 

The dynamic correspondence principle to be employed states 
Lhat, the spectrum of the viscoelastic solution can be obtained 
from the speot,rum of the correspor~dir~g elastic solution simply by 
replacing the elastic constants by their corresponding viscoelastic 
corrlplex mocluli. To verify the dynamic correspondence princi- 
ple for t,he present analysis, let us start wit,h t,he stress-strain re- 
latio~is for n homogeneous isot,ropic linear viscoelastic core 
material 1'21. 

Where P,, Q,, P,', &,' are the linear differential operators 

SCj and eij arc lhe stress and strain deviators, respectively, arid 
where uiciz 2nd eaii are three times the mean normal stress and 
st,mi~i. The coetficients p,. p,', q,, q,' are constants. The stress 
: ~ n d  ~ t ~ r a i i ~  deviators are related t,o the stress tensor uij and the 
st,mi~t tensor e i j  by t,he relat,ioris 

where 6 j j  is the Kro~~ecker delta, equal to unity when i = j and 
equal to zero wheii i f j. 

Just as each st,ress and displacerne~iL conlpone~li, is :I scal:tr fru~i:- 
lion, so is each of the st,~.ess and strain de~iat~ors. Hence, it ,  is 
permissible l)o lake Lhe Poruie~ t,r;t~~sforrn o f  erlnal.iotr (16 )  :tnd 
write 

In  order to rewrite the previous relations in such a form that 
they appear similar to Hooke's law, let 11s define the viscoelastic 
complex moduli G,(jw), Kc(+) as 

Then the transformed viscoelastic stress-strain law may be 
written 

The previous relations would look like Hooke's law for an elastic 
material if stress and strain were to replace the Fourier transform 
of stress and strain, if the shear modulus G were to replace the 
complex shear modulus G,(jw) and if the bulk modulus K were 
to replace the complex bulk modulus K,(jw). 

The foregoing analogy  suggest,^ an approach to the vibration 
problem in which the core is made of a viscoelastic material. 
The approach is based on the analogy arid the fact that the st,rain- 
displacement relations and tihe equatioris of motiori of ari as- 
sembly with an elastic core or a viscoelastic core are the same: 
the oilly difference arises in the cor~stitutive equations; namely, 
Hooke's law or the viscoelastic relation of equation (16) .  The 
Fourier transform of Hooke's law has been shown to correspond 
t,o the Fourier transform of the linear viscoelastic law, equation 
(16),  provided G is replaced by G, and K by Kc. Then all equa- 
tions are iderltical and likewise their solution. Hence the solution 
to an elastic vibration problem can be converted to a solution of 
a viscoelastic vibration problem, by first taking the Fourier 
transform of stress, strain, and displacement followed by the re- 
placement of the shear modulus G by the complex shear modulus 
G,(jw), and the replacement of modulus K by the complex bulk 
modulus Kc($). The resulting expressions describe the spectra 
of stress, strain, and displacemer~t associated wit>h the viscoela~t~ic 
problem. 

The Fourier transform of stress, strain, and displacement asso- 
ciated with elastic solutioris to the vibrat,ion problem urider con- 
sideration were presented in the previous sections. They call be 
converted to viscoelastic solutions merely by replacing G with 
G, and K by Ii,, where G, and Kc are t,he viscoelastic complex 
moduli of the core material. 

Displacement Spectra for Lowest Wave Number 
The general results derived irr the previous sections will be 

specialized for the lowest wave 11umber n = 0, ilk order to preserrt, 
an explicit solution t,o the spect,ra of displacement compolrents. 

When n = 0, equation (7) for Ti, , ,  V,, l.edrioes t80 

IJn = --acoJ,(ar); Vll = -pho.Jl(Pr) (22a, 0 )  

where the const~ar~ts ba, co are the solrit,io~is t,o t,he tjwo algebraic 
relations of equat'iou (9) which reduce to 

The matrix M for n = 0 is 

where the matrices A and R are 
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elast'ic materials will be varied so that the efiect of changing rc- 

',t = (25n,) t,nrdatio~r time arid re1ax:ttiolr time can be evalrlat,ed. 
I'i~xf; let, 11s examine the hehavio~ of :xn :tssemhly i l l  which : I I I  

- ("c:."/) 1 nla,st.ic cil,se is bonded l,o :r vi~coelast~ic solid (:ore which is a,ssunreif 

zGa:: t,o he elasl,ic irl dilatiat,ion, hut, acts like :t Voigt, solid ill dist,ortio~~. 
+ - 12 D (:):I (2%) Onr objec:tJive is to dei,ermine t,he frequency resporrse of t.he radial 

bond stress u,,(a, 8, t )  due t,o a la,i,eral presswe loading p(8, 1 ) .  
- XwZ - 2Ga"D I t  is to be recalled that t,he general frequency-response function 

Z,(rp)(jw, a) /P , ( jw)  for t,he aforemeni.ioried viscoelaslic problem 
Hence t.he const,ants are prescribed by the relatios~s can be obtained from equations ( 7 ) ,  (9), ( l o ) ,  ( l l ) ,  and (15b) by 

aQo 
set)t,ing &, = 0 and replacing G by the complex shear modl~lns 

pbo = (26a) 
(pw% + 2G).Jl({) - G{Jo({) 

G, = Gu(1 + jwr) (28 )  

aPo 
Eh 

where T is the Voigt retardation time and GO is the sla11c modl1111s 

p a 2  + %G - -1 ,Jl(z) of rigidity. 
a(1  - v2 )  At the lowest circumferential wave number, n = 0 the response 

(26b) can be cast in the form 

Zu(rr) ( jw, a )  Z J ~ ( Z )  - 2(C2/C1)2J1(~) 
(29)  " (:)]I .Jl(a) - Z .JO(~)  

G,(1 - v2 )  

The coiistallt bo is seen to depend only on QO whereas the conslant where t,he dimellsionless frequency 
co is dependent only upon Po. When equation (26)  is substituted 
into equation (22),  the spectra of displacement components are z = oa/C1 

obtained. and the terms 

aP~Jl(orr)  C,  = J ( K  + +G,) /y;  C.. = 'r/~> (31) 

paw2 + 2G - - One should observe that when h / a  vanishes, the ratio Zo(T2)  (@,a) 
a ( l  - v2)  / P ~ ( j w )  is equal to -1  a t  all frequencies w. This occurs be- 

(27a) cause of the boundary conditions a t  r = a, which force the surface 
pressure p(0 ,  t )  to be equal to -u,,(a, 8, 1) wheri the casing is 

vo = 
aQoJl(Pr) (27b) nonexistent. 

G{Ju({) - (paw2 + 2G)Jl ({ )  When equation (28)  is introduced into equations (30)  and (31 )  
t>he dimensionless frequency z is found to be 

The displacement spectra are explicit functions of w, r for pre- 
scribed values of PO,  Qu. 

The foregoing results show that the radial displacement de- 
pends only on the radial pressure, while the tangential displace- 
ment depends only on the tangential surface shear. One ob- 
serves, also from equation (27a) that the term Uo vanishes as the 
bulk modulus becomes infinitely large. Hence a nonzero radial 
displacement cannot be independent of 8 in a solid incompressible 
core in a stat,e of plane strain. Also, with Vo(jw, r )  independent 
of the bulk modulus K ,  i t  follows {,hat the response of the as- 
sembly to a tangential shear which does not vary in the circum- 
ferential direction is the same for an illcompressible as i t  is for a 

The ratio 

compressible core material. 
where CI(O), Ce(') are the zero frequency (static) vahles of C,, CL, 

I t  is intere~t~ing to note that the forced-vibration response to a respectively. Also, 
tangential shear q(0, t )  which is independent of 8, without the 
presence of any ;adial pressure p(8, i), resnlt,s ill a rigid-body E - - 
rotation of the casing about, i.he assembly axis. The response to " (F) (54) G,(1 - v2)  Go(1 - v 2 )  1 + jwr 
a time-varying radial pressnre which is uniform aromid {,he cir- 
c~~mference resrdt,s in radial "breathilrg" of the assembly. Inspection of equations (29),  (:32), (33)  a ~ i d  (34)  shows that t,lle 

The speclra of displacemerrt components V o  give t,he 1.e- frequency-response function depends only 0 x 1  six dimensionless 
sponse l,o snrface load sped,r:t Po, Qo corresponding to a radial rcalpammelers, 
pressnre uniform arolmd t,he circt~mfereuce of (.he casiug, and a 
nniform shear flow, respec:ldvely. The radial pressrue has 110 re- 7 C p )  h' h 

COT, - CdO) - P 
- and --- 

sultarit force or moment, while the shear flow is st3atjically eqniva- a ' Cl(o)' GO(l  - v2)' a h y  
lent to a 1,wistirrg couple. 

Discussion of  Results 
The first parametel is proportional to the excitation frequency w. 
The second parameter is proportional to the core retardatloll 
time T.  The third warameter and the fourth are a measure of 

I t  is difficult t,o evaluate the sigilificarice of the derived results the elastic properties of tjhe assembly. The fifth paramet.er is 
without considering very specific situat,ions. IIence considera- t,he thicklress to radius ratio, and the sixth pa,rametev is I,he rat'io 
t>ion will be given to the behavior of assemblies wit,h two dif- of casing densit>y to propellant density. 
ferent visooelastic cores, one a Voigt, material and the other a Let us continue our examinat,ion of a Voigt core by computing 
Maxwell material. The characteristics of each of these visco- for tthe following fised values of the independent, parameters 
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and for t,wo values of the core's rio~ldimerisional viscosity, 

TC~'" rCe(" 
---- = 0 ,  and --- = 0.2455 

a a 

Co~isideratiorl is given only to the three lowest natural fre- 
querrcies of the assembly. The resulls are obtained from equa- 
tion (29)  and plolted in Fig. 2 and Fig. 3 in the form of /Zo("')/l'a/ 
versus the dimensionless frequency W U / C ~ ( ~ )  and plotted in Fig. 4 
and Fig. 5 as t,he phase angle / Z ~ ( Y T ) / P ~  versus t,he dime~rsionless 

frequency ~ U / C ~ ( ~ )  for each valne of rC3(0)/a. 
At first the Bessel fu~ictions of complex argument z in equai.io~r 

(29)  were obtained \wing the tabolat,ed values of Reference [9] .  
However these tables list J O ( z )  and J l ( z )  for i~lcremerits in L z  of 
5 deg, which is too coarse a mesh size for lightly damped iricom- 
pressible materials. A more converiierlt method of calculatio~l 
was obt,airled from equation (32)  based upon the small magnit<ude 
of the phase angle L z; namely, 

Ijerivatioll of the simplified form is aided by the observations 
that for the numerical values and frequency range used in the 
example (1 > L z  > -0.05 rad. Rather t,han use tabulated 
values, one espands J l ( z )  and 3.JO(2) in power series in the real 
variable Lz ,  holdiirg lil fixed. These series converge in some 
interval about L z  = 0. When only the lirrear terms in L z  are 
retained t,he power series may be writken 

with 1 ~ 1  = x = w a / C ~ ( ~ )  

Fig. 2 Amplitude versus frequency response of radial bond stress due 
$0 lateral pressure 

It is important, to observe that t,he approsirnation we make 
:Lsstrmes [C2(n)/CL(0)]2wr << 1, which is correct for the part,ictilar 
triuneric:al v:tlr~e of CI(o)/C3(i1) = :30.35 rrsed i l l  (.he cx:~.mple. TTow- 
ever wr is definit,ely 11o1, less 1,ha11 1111it,y. 

Fig. 2, which shows the st,ress :tmplit.ude ~.:%t,io :ts :t frurctiorr o f  
l>he dimensiorrless frequeircy for vanishing core viscosity, clearly 
illustrates the infirrite resor~aut spikes a t  ~ U / C ~ ( ~ )  = 2.729, 5.035, 
7.739 which are the natural freqt~encies of the all-elastic as- 
sembly, previously discussed by the aut,hors [I]. It is interesting 
to observe the arltiresorlances a t  wa/C1(0) = 2.40, 5.55, 8.63. 
Theoretically a surface pressure irf arbitrary amplitude, {mi- 
formly distribrlted around the circumference, but, sinusoidal in 
lime at, these aniiresonallt. freqrte~tcies would riot induce ally 
radial stress at, t,he interface. 

The low-freql~elrcy asympt,ote lZo (~r ) /Po(  = 0.450 represents 
{,he static radial stress a t  {,he interface due to a uniform srlrface 
pressure which is co~ist,ant in time. A general expressiorl for the 
static bond stress car1 be obt,ained from eqt~at~iorr (29)  by t>aking 
the limit, of it, as w vanishes; namely, 

I t  should be observed that the static radial bond stress is 
always less in magnitude than the surface pressure, and has the 
same sign as the surface pressure. This response is due to the 
ability of the case to take hoop stress. 

Fig. 3 illustrates the major effect)s of core viscosity. I t  is 
based on t,he same parameters as Fig. 2, escept t>hat rCz(O)/a 
is increased from 0 to 0.2455, The infinite resonance spikes are 
reduced tjo finite masima, arid tihe arrtiresonar~ces are increased 
in magnitude from zero t,o local minima. The calculated 
resonance peaks are 120(rr)/~ol = 12.3, 3.04, 1.43, and the anti- 
resonances are 1 2 0 ( ~ ~ ) / ~ o (  = 0.028, 0.240, 0.260 in order of in- 
creasing frequency. 

The effect of core viscosity on attenuating the resonance peaks, 

Fig. 3 Amplitude versus frequency response of radial bond stress due 
to lateral pressure 
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Fig. 4 Phase versus frequency response of radial bond stress due to 
lateral pressure 

and on magilifyitlg the antiresonances increases with increasing 
frequency. This is to be expected with a Voigt core material, 
since a Voigt material behaves like an elastic solid for low frequen- 
cies, and like a viscous fluid for high frequencies. If the core ma- 
terial were to behave like a &/laswell body in distortion, that is 

Fig. 5 Phase versus frequency response of radial bond stress due to 
lateral pressure 

tardation time to ~ C r ( ~ ) / a  = 0.2455, rounds t>he edges olf (,he dis- 
continuous phase response of an all-elastic assembly. I t  is in- 
terest,itrg t,o rlote from a comparison of Fig. 2 and Fig. 4, as well 
as Fig. 3 atid Fig. 5 ih:%t, est,remals ill phase oc:crrr midway hetween 
extremals in gait]. 

111 order t.o obt,ai~r a comparisoll of Voigl, and NIaswell core 
~nai~erials, the first 1,hree resonance peaks of ~ ? ; O ( ~ ' ) / P O ~  are 

(:38) evaluated for ir~c:rensing vn111es of  ~C2(" ) /a .  I:est~lis are listed in 
Table 1. 

rlrol.e cornplical.ecl efTeo1.s would occru.. 10 may be observed f r o ~ ~ i  this t,nble t d r : ~ i  for both Voigt, xl~d 
The phase resporrse for at, all-elastic assembly rnay be see11 in Allaxwell cores, arid small values of T the amplit,rtde of ?;o("')/P,, 

Fig. 4. Since the frequency response for an all-elastic assembly decreases with increasing T a t  all three resonant. freque~icies. As 
is always real, the phase is always real, the phase is always plus T getla larger, the resoirarrt amplitude increases for idle R/laxwell 
180 or minus 180 deg, with jumps in the phase angle L&,(T')/PO material, while the Voigt, material continues to exhibit decreasing 
when passing through a resonance or antiresonance. resonant amplitjudes. 

I t  can be seen in Fig. 5 that increasing the dimei~siorrless re- This phenomeriori can be explained on the basis of amplitude 

Table 1 Comparison of resonant amplitudes of ZU('~)/PO for Voigt and Maxwell core materials 

p / h / y  = 1.96 E/Go(l - v 2 )  = 22,500 CI( ' ) /C~(")  = 30.35 h / a  = 0.1 

TC~(O)/U 
Maxwell 
Voigt 

TC?(~) /U  0.00001 
Maxwell 3 , 032  
Voigt 5.034 

T C ~ ( ~ ) / U  0.00001 
Maxwell 7.733 
Voigt 7.739 

4 
Voigt: G, = Go(1 + j w ~ )  C I ( ~ )  = .)iK + -, G O ) / ,  

Maxwell: G, = G o j w ~ / ( l  + j w ~ )  Cd") = &&y 

First resonant frequency 
w ~ / C l ( ~ )  1Zo'"'lPol 

Third resonant frequericy 
wu/C,(O) I ~ O ( ~ ~ ) / ~ ' O ~  
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IG,I (modulus) and phase angle LG, (argument) of the comples 
shear modulus of rigidity G,. 

Voigt : 

\G,\ = G ~ v ' ~  + ( ~ 7 ) ~  ~ 3 9 ~ )  

Maxwell: 

LG, = tan-' ( ~ / w T )  ( 3 9 4  

Since viscosity enters into the cylinder assembly only through 
6, the amount of damping introduced wili be proportional to both 
I G , . ~  and LG,. 

For the Voigt material, amplitude alrd phase angle of G(jw) each 
illcrease with iricreasing T for fised resonant frequency w, so that 
for sufIicient,ly large T the core acts like a viscous fluid. More- 
over a t  T = 0 the Voigt material has G,(jw) = Go; i.e., i t  behaves 
like an elast,ic solid. Hence, a t  each resonant frequency, damp- 
irig increases monotonically with T for a Voigt material. 

For the Maxwell material, amplitude / G , I  increases with in- 
creasing T, for fixed resonant frequency w; while LG, decreases. 
In  lhe limit, as T -+ m, the Maswell material has G,(jw) = GO; 
i.e., it. behaves like an elastic solid. At T = 0, G,(jw) = 0, so 
that for suflicient,ly small T, the Maxwell material acts like an 
iriviscid flnitl. IIeiice, for each resonant frequency, there must 
be an optimum T, a t  which the core mat,erial exhibits the most 
damping. YIoreover, since G, is a function of w only through the 
product WT, the optimum T must decrease as the resonant fre- 
quency w increases. This theory is borne out by the resdts 
shown in Table I. 

Summary and Conclusion 
111 this paper we have reviewed the equat,iolis gover~lilig the 

forced, traiisverse vibration of a cylindrical as~ernbly ~olisisting 
of a solid core with a case-bonded outer shell. 

Using n Fonrier trallsform method of solution, the frequency 
response of the assembly was obtained, co~isidering both an arbi- 
t,rary norm:ll pressure and ia~igeiitial shear applied to the ouLer 
surlace of the casil~g. The solatioll was shown to hold for a gen- 
eral linear viscoelastic cose, if the elastic constants are replaced 
by corresporidirig comples moduli. 

Curves of the lowest circumferential wave-number frequency 
response Zo(m)(jw, a)/Po(jw) of the radial bond stress due to  
lateral pressure were plotted for a particular configuration. 
Several values of core time constant were used, assuming a Voigt 
model and also a Maxwell model. 

The results of the present analysis were presented in terms of 
the Fourier transform of the stress and displacement components. 
One can evaluate each of these transforms for specific time-de- 
pendent loading histories. Then, by the use of the inverse trans- 
form, i t  is possible to determine the time-dependent relations for 
stress and displacement. 
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